
n

I C A S E
HIGHLY PARALLEL MULTIGRID SOLVERS FOR ELLIPTIC PDEs:

AN EXPERIMENTAL ANALYSIS

Dennis Gannon
and

John Van Rosendale
__ ~ ~

(N A S A - C R - 1 8 5 8 1 3) HIGHLY PARALLEL MULTIGRID
SOLVERS FOR E L L I P T I C PDEs: AN EXPERTHENTAL
ANALYSlS (I C A S E) 40 p

~ ~~ -

N89-71362

Unc 1 as
00 /64 0 2 2 6 3 5 8

Report No. 82-36

November 17, 1982

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
'NASA Langley Research Center, Hampton, Virginia 23665

Operated by the

UN I VERS IT1 ES SPACE RESEARCH ASSOC I AT I ON

1

Highly Parallel Multigrid Solvers for Elliptic PDES: An
Experimental Analysis.

Dennis Gannon

Department of Computer Sciences, Purdue University

John V i Rosendale
ICASE, NASA Langley Research Center

ABSTRACT

Computer Architectures consisting of many thousands of pro-
ceasing elements have been proposed and studied in the literature.
In many cases, the motivation for buildmg these systems is to
speed-up large scale scientific computation such as the solution of
elliptic partial difierential equations. To provided a basis for com-
paring architectural alternatives, it is helpful to analyze the vari-
o m classes of algorithms that might be well suited to a highly
parallel implementation. This paper considers two existing varia-
tions of the Multigrid technique that have been considered suitable
for parallel computation and describes a new algorithm which is
designed to exploit a greater level of concurrency than the previ-
ous schemes. Based on archrltectures proposed in the literature, a
series of interprocessor communication models is developed to
serve as a basis for comparing the selected algorithms. The algo-
rithms are tested experimentally and their performance for each
communication model is illustrated.

,

This research was supported by the National Aeronautics and
Space Administration under NASA contracts no. NAS1-15610 and
no. NAS1-16394 while the authors were in residence at ICASE, NASA
Langley Research Center, Hampton Va. 23665. Addional support
for the first author was provided by NSF G r a n t MCS-8108512.

Highly Parallel Multigrid Solvers for Elliptic PDEs: An

Experimental Analysis.

Dennis Gannon

Department of Computer Sciences, Purdue University

John Van Rosendale

ICASE, NASA Langley Research Center

1. INTRODUCTION

Most recent research in parallel algorithms for solving elliptic partial

differential equations has enphasized direct methods. This work ranges in its

degree of parallelism from the systolic band solvers of Kung and Leiserson [181

to a full nested dissection elimination (George and Liu [21] and Gannon [lo]) and

the fast Poisson solvers of Sameh, Chen and Kuck [25]. In the case of an elliptic

partial differential equation on a square domain that has been discretized as a

m by m mesh, the band solver requires O(m2) processors and m2 parallel time

steps. The nested dissection method requires the same number of processors

but solves the problem in cm steps where c is a rather large copstant. If the

problem is the Poisson equation, the Sameh-Kuck scheme requires only

c *tog (m) steps where, in this case, c is a small constant.

To devise a scheme that is more general than the fast Poisson solver, but

retains sublinear time bounds it seems necessary t o turn t o iterative algo-

rithms. While there is a considerable body of work devoted to relaxation

Work supported by NSF grant MCS-8109512 and ICASE, NASA Langley Research Center.

- 2 -

methods for vector processors, research on highly parallel iterative algorithms

has been limited. Variations on the S.O.R. and Conjugate Gradient methods have

been studied by Adams [l] for the mesh-connected Finite Element Machine.

Baudet [5] considered chaotic relaxation algorithms, which can be performed on

parallel computers. Brandt [7] has considered a parallel version of the mul-

tigrid method for which it can be shown that solving an ehptic problem to within

a constant multiple of the truncation error requires no more than O (l o g 2 (r n))

time steps on m2 processors.

In this paper, we extend Brandds work by analyzing the performance of

several multigrid algorithms suitable for parallel architectures. The plan of the

paper is as follows. In section 2 we describe two algorithms derived directly

from their standard serial formulations and give a simple analysis of the result-

ing par alle 1 c omp ut a tional complexity .

In section 3 we show that the multigrid family may be extended to include

an algorithm well suited to very h g h levels of concurrency. Each of the three

algorithms considered here is easily described in terms of a small set of array

valued parallel operators. To evaluate the performance of these methods we

analyze the behavior of this set of operators in terms of the time complexity

with respect to various inter-processor communication models. This analysis is

given in section 4 for several classes of proposed VLSI and Multi-Microprocessor

system architectures. In section 5, the communication cost models are com-

bined with a set of numerical experiments to yield an approximate profile of the

behavior of this family of algorithms over a wide range of highly parallel sys-

tems.

Scstion 6 considers the case of limited processor systems, and considers

the extrapolation of experimental results to three dimensional problems.

- 3 -

2. MULTIGRID ALGOFUTHMS.

Of the wide variety of multigrid algorithms considered in the literature, two

seem likely to perform best on parallel computers. The first of these is an algo-

rithm related to the type of method considered in most theoretical research.

The second is one type of multigrid algorithm commonly used in practice.

Multigrid algorithms are equally applicable to finite element or finite

difference discretizations of elliptic boundary value problems. Suppose, for

example, we wish to solve the linear system created by a discretization on a rec-

tangular grid. To solve this linear system, multigrid algorithms employ two

basic operations - relaxation iterations on this grid, and solution of related prob-

lems on a coarse grid. If the original grid has mesh spacing h, a coarse grid with

mesh spacing 2h is usually used. An approximate solution of the given elliptic

boundary value problem is often obtained on this coarser grid to provide a good

starting value for iteration on the original fine grid. But, more importantly,

solution of related problems on t h s coarser grid can be used to accelerate the

convergence of the iteration on the original fine grid. Solving these related

coarse grid problems efficiently reduces the long wavelength error components

on that grid. This leaves only error components on the fine grid having

wavelenghts comparable to the mesh spacing, and these can easily be removed

by point iterative methods.

Fedorenko [9] observed the related problems on the coarser grid are again

discretized elliptic boundary value problems and can be solved by the same

techniques. This leads to a recursive algorithm where the solution of the prob-

lem on the original grid having mesh size h requires solution of a sequence of

problems on the coarser grid with mesh size 2h. Each of these coarse grid prob-

lems can be solved using an iteration periodically accelerated by solution of

problems on even coarser grids having mesh size 4h. The recursion is carried to

- 4 -

a depth where one encounters a grid so coarse that either direct or iterative

methods have trivial computational cost.

To describe such algorithms more precisely, suppose we have a family of

finite element spaces [M i] & o , nested in the sense that
&

Mi-ICMi , 1 Si S n ,

and suppose the elements of space Mi have size approximately 2+. We will let

superscripts denote membership in the corresponding space, so that ut will be a

function in M i , Let & be the finite element operator approximating the elliptic

operator on space Mi. Also, at each level, let P be a parameter controllmg the

number of recursive calls made to the next level, let J be a real parameter

whose ceihng is the number of smoothmg iterations performed at each level and

let T be the rate at which J changes from level t o level. The algorithm can then

be described by the pseudo Pascal procedure below.

Procedure MG(var u i , f i : function: i .P integer; r,J: real);
var v i -1 . g i - I : function;

j: integer;

begin
ifi=Othen

solve &ui = f by Gaussian elimination
else begin

perf o m J Jacobi iterations to approximately solve &uc = j" :
z l i - l .- .- 0

(* generate a residual for a coarser gird problem *)
gi-1 := ni - I (f i - 4 u i) ;

ui := U i + qt&i-l);

for j := 1 to P do
MG(v'- ' , g i - ' . i-1, P. r, JV);

end;
end;

Here ni-1 and 9i are projection and injection mappings used to accomplish the

change of bases required in going between Mi and Mathematically,

qti : Mi-1 ---+ Mi
is just the natural injection of Mi-1 into Mi written in terms of the finite element

- 5 -

basis for these spaces. The projechon

ni : Mi ----+ Mi -1

is the adjoint of ' k i , thought of as a linear transformation between finite dimen-

sional vector spaces.

Procedure MG can be used to solve elliptic boundary value problems with an

optimal complexity bound. That is if N unknowns are needed to represent a

solution in the finest finite element space Mn, one can obtain a solution which is

accurate to within truncation error of the finite element equations for Id,, in

O (N) serial operations. To obtain this optimal bound, one uses procedure MG

first to generate a good solution in the coarsest space Mo. Then using this soh-

tion in M o as a starting value, one uses MG to generate a good solution in M1, and

so on. If instead, one applied procedure MG directly on the first space M,,,

without first obtaining a good starting value from the coarser grids, an

O(lV*log (N)) bound would result.

.

Though the method used to obtain a good starting value for multigrid itcra-

tion in M, is important, our main focus will be on the computational complexity

and convergence rate of the iteration in M,. To this end, we define a procedure

Outer, to carry out this iteration.

Procedure Outer(var un , f n: function; n,P,k: integer; r,J: real);
v u j: integer;

begin
for j:= 1 to k do

MG(un, f" ,n,P,r,J):
end;

A number of multigrid algorithms considered in the literature are

equivalent t o various choices of the calling parameter for Outer. We look briefly

at three possible choices of these parameters:

- 6 -

l . P = 2 , r = l

2 . P = l , r > 2

3 . P = l , r = l

P controls the number of recursive calls procedure MG makes to itself in order

to solve the related coarse grid problems and r controls the relative number of

inner iteration performed in these recursive calls. Thus, either r>l or P>1

causes more inner iterations to be performed on the coarse grids. The first

choice is equivalent to the type of multigrid algorithm considered in most

theoretical work on multigrid methods. In particular, such algorithms are exam-

ined in Fedorenko [9], Hackbusch [14], Nicolaides [24], and Bank and Dupont

[2]. The second choice is a variant described in Van Rosendale [30]. The third

choice corresponds to one of the types of algorithms considered by Brandt [E],

McCormick [231 and others.

For all three choices of the calling parameters, it is possible to prove the

the multigrid iteration in procedure Outer has a spectral radius p < 1 indepen-

dent of the number of levels n, i.e. the convergence rate is independent of the

mesh spacing h = 2*. Let Iu,]ikpo be the sequence of approximate solutions

occurring in procedure Outer. That is, let uo be the approximate solution in M,,

before the first call to MG, and let u1 be the approximate solution before the

second call. Also let 21 be the true discrete solution, and suppose the elliptic

boundary value problem is second order, self adjoint and regular for a < 0.

Then one can show

Theorem 2.1: Let P = 2 and r = 1 or let P = 1 and fix r > 1. Then for any

a>O there exists k = k(P, r, Q), such that

ll%c - 41 < Q b o - Ell
The norm here is the natural energy norm but the same result holds for the

L2 norm on problems that are H2 regular. In either case, the spectral radius

- 7 -

satisfies p 9 o, since Mn is finite dimensional.

The proof of theorem 2.1 is given in Bank and Dupont [2] for the case P = 2,

r = 1, and in Van Rosendale [30] for the other case. There is an error in the

extension to locally refined grids in Van Rosendale [30], but for quasi-uniform

grids, such as those considered here, there is no difIiculty.

For the th rd choice of parameters considered, P = 1, r = 1, an analog of

Theorem 2.1 has been proven recently by Braess[G], Hackbusch[151 and McCor-

mick[23]. Thus it is reasonable to assume that the iteration in procedure Outer

converges about equally fast under each of the three choices of the c w

parameters being considered. This implies that, up to a constant factor, the

serial cost of reducing the error by a fixed amount will be the same for all three

methods.

On a parallel computer, the situation is quite Werent. The first choice of

parameters, P=2, r=l, will perform quite poorly, since the recursion involved

amounts to a binary tree traversal. The second choice, P=l , r>l, should be

better and the third choice, P=l , r=l , should be the best, since the least work is

done on coarse grids with this choice.

Calculating the computational cost for each of the multigrid iterations in

procedure Outer bears out these conclusions. Assume we have a total of N=me

processors that may operate in parallel. The operators L, n, ck are computed as

sparse matrix multiplications. For example, let Ai,,, b = l o g (r n) be deflned in

terms of the standard bilinear local finite element basis, {vu]ijrl,n, on an m by

m rectangular mesh where the basis function rprj is non-zero only on the node

with coordinates (ij). If a function u is written

then the coefficient of &, (u) at node (k,l) is

L b (u)kl = x & L , i j % j *
i j

where the coefficient Lkl.i j is non-zero only for the nodes neighboring the node at

(k , l) . Consequently, if one assigns one node to each processor and ignores (for

1

2

now) the communication delay in transportmg the values U.+J from node (iJ) to

each of its neighbors, the time to compute L (u) is independent of N. Similarly,

2 1 c (J+2)"'2

1 l<r<2 c (J + Z) N l ogp

is computed a t each node as local averages of values from neighbor nodes.

The injection is accomplished by first mapping % to the odd indexed nodes of

Mb+i, i.e. let

1

u'g = ui-l f o r i and j odd -
2 ' 2

c (J+Z) log ,N

= o o t h e n . u k .

The coefficients of \kb+l are given by

The adjoint of \kb+I, IIb is expressed as

1

3 .: =-I
n b (u) k l = ~ ~ / 2) ' s ~ + ~ f ' u Z k - l + 8 ,Zl- l+t

Again ignoring communication costs, m where k and 1 each range from 1 to -
2 '

the parallel time for both \k and ll is independent of N , and is roughly equal to

that required to compute L (u) . If we set the time for one of these operations as

unity, then the total time required per inner iteration in procedure Outer is:

1 Parallel Time for One Outer Iteration I
Time I c m e /I I 7- I I

Here c is a constant near one and J is the number of Jacobi inner iterations done

-9-

on the finest space Mn. N is the number of nodes or variables of H n .

To solve the elliptic boundary value problem to within truncation error, one

could first use procedure Outer with some fixed value of .k on the coarsest

space M o l then use the result as a starting value for Outer applied to MI, and so

on. This would yield a good solution in the finest space Mn. The computation

time would be the same as given above but multiplied by a factor of log4N. Thus

we have:

I Parallel time for a Complete solution

t i m e
I 1

2 11 ck (J+Z) (log*N)N”2

2 lo&N ck (J + Z) (l o g 4 N) N

3. CONCURRENT l T w n T O N

Though the estimated parallel solution time for the algorithms just con-

sidered look reasonably good, one can ask whether these algorithms ex@oit

parallel architecture as fully as possible. Suppose, for example, one has a

number of processors comparable to the number of fine grid mesh points.

Then when iterating or interpolating on the finer grids, processors will be well

utilized. However, when iterating or interpolating on the coarsest grids,

processor utilization would be quite poor. In this section a new algorithm

is described, which is intended to utilize parallel architecture more fully

than the algorithms in the last section.

The effectiveness of multigrid iterative algorithms can be viewed in a

number of ways. One way of looking at it is to note that point iterative methods,

such as S.O.R. are effective at reducing Fourier error components h a v q

wavelengths comparable to the mesh spacing, but 'do poorly on error com-

ponents having much longer wavelengths. Multigrid iteration is effective, since

it reduces such long wavelength components on coarse grids, where the mesh

spacing is comparable to their wavelength.

In this view, one is using the projection operators in multigrid algorithms

to decompose residuals into their short and long wavelength Fourier com-

ponents. Pushing this idea slightly further, one can use these projections to

decompose a function on the finest grid into components on every grid. In this

way one can obtain a crude analog of the Fourier decomposition of a fine grid

function, which we will call an "approximate spectral decomposition."

To see how this would work, let gn be a given function in the finest finite

element space, Mn , and letpiEMa , OSiSn, be a family of functions, one in

every grid level. Then one can consider the following sequence of operations:

p" : = g n ;
for i := n dormto 1 do beein

Here step 1 in the loop sets pi'' to the smooth part of p i . Because the

interpolation +a is the natural injection between finite element spaces, step 2

reduces pa , so that p i+p i - ' is conserved on each pass through the loop.

On complehon of these operations, one has

g" = g p i .
i = O

Here p o will be the smoothest part of q " , and pn the most oscillatory. The

functions p i , OSisn, are increasingly oscillatory with increasing i,

A simple multigrid algorithm can be based on these ideas. In order to

solve L, u" = f n , one could carry out the following sequence of operations:

- 11 -

1. Form an approximate spectral decomposition of f :

2. Approximately solve the problems:

&vi = s i , O s i s n ,
by point iterative methods.

3. Sum the solutions on all grid levels:

The point iterative methods in step 2 here would converge rapidly for the

first few iterations on each grid level, but would then slow down. This rapid ini-

tial convergence occurs, since the approximate spectral decomposition in step 1

makes each of the data functions gi one of the most oscillatory functions in its

finite element space Mn, However, after a few iterations, the residual on each

level would be relatively smooth, and the convergence correspondingly slow,

To avoid slowly convergent iterations in step 2, one could perform only a few

iterations on each level, and then proceed to step 3. The resulting approximate

solution ,Iln might not be very accurate, but could be iteratively improved by

repeating the algorithm using the residual as data. Such iterative improvement

would be necessary in any case, since the iterations in step 2 invert o. different

discrete operator on each grid level. Each of the operators {I,,]&' approxi-

mates the fine grid discrete operator , but for small i t h i s approximation can

be quite poor.

The algorithm just described would be reasonable on a serial computer, but

is not as parallel as we would like, for the architectures to be considered. The

iteration in step 2 of this algorithm can be done concurrently on all levels, but

the interpolations in steps 1 and 3 must be done level by level. To avoid this bot-

tle neck, we look at a modified algorithm in which the amount of interpolation

- 12-

needed is minimized. The elgorithm is a two step iteration whch may be

sketched as follows:

for i := 1 to itmz do
bcgin

end

1.
2.

peri'orm J smoothing inner iterations on each grid level
interpolate solutions and residuals between adjacent levels

The iterations in step 1 here can be done in parallel on all grid levels. The same

is true for the interpolations in step 2, hence the name "concurrent iteration."

Figure 3.1 shows the data paths in this algorithm.

f i g w e 3.1 &id Level Data now of C o n c u r r e n t I t e r a t i o n .

Rzhicving data paths such as these, whch can easily be mapped onto parallel

architecture, is the underlying motivation for thrs algorithm.

Mathematically the algorithm required is somewhat more complex than

those in thc last section. First we need a procedure to shift the data in a family

- 13-

of functions, {pi]in,0 one level, by performing a sequence of injections. Defining a

data type "vecffn" representing such a family of functions, this procedure,

mznj , is given below.

procedure minj (vwp : vecffn);
var i : integer. ij : vecffn;
begin

fori:= 1 tonpardo

Lori:= 1 tonpardo
4 i .- .- , p i p i - l ;

case i of {
0 : p i : = o ;
n : p i := p i + q i ;
otherwise : p i := qs :

1
end; (*of minj *)

In this procedure, both the loops explicitly described, and the loops hidden

in the interpolations can be done entirely in parallel. The computation

may be viewed as a vector of array operators. Also note that this procedure

n

i = O
conserves p in the sense that the s u m c \k, ..!Pi+rps remains unaltered. Because

the operator is the natural injection of a subspace of a vector space, the

n

i =O
operator +i+lzi is nothing more than the pointwise sum of { z () ~

i= 8

viewed as functions over the defining domain. In the following paragraphs we

abbreviate this operation as Z i .
n

i = O

A procedure similar to mznj can be given to perform projections between

grid levels. This operator, mprj is described below.

procedure mprj (varp : vecffn);
var i : integer; S : vectfn;
begin

for i := 0 to n-1 pardo

fori:= Otonpardo
q i .= nipi+l ;

case i of {
0: P i * - . -pi + q'
n: p' := p' - +i-lq.i-l

otherwise: p i := p' + q i - 9i-Igt-'
I

end; (* of mprj *)

This procedure can also be done entirely in parallel and conserves the s u m

c p i , Also note that n successive calls to this procedure would perform the
i - 0

approximate spectral decomposition of p discussed at the beginning of this sec-

tion.

The two procedures just described, mprj and m k j , are the basis for the

concurrent iteration algorithm. Suppose we also have a procedure

jacobi (v j , q j) , which approximately solves

Livi = Qi

by performing a fixed number of Jacobi smoothing iterations. Then the con-

current iteration algorithm for the discrete problem

is as follows

- 15-

procedure concurrent (var un , f " : function: J. itmx : integer):
(* performs itmx concurrent multigrid iterations to

approximately solve L,un = f IL

v u V , d. ij : vectfn;
i.j : integer;

*)

begin
for j := (I to n pardo begin (initialization *)

.j := 0;
q j :=o;

end;

1. q n := f";

2.

(*put datain ij *)
ior i := 1 to itmx do begin (outer iteration loop *)

Lor j := 0 to J pardo
jacobi (v j , q j) ; (* performs inner relaxations *)

for j := 0 t o n pardo begin
3. d i := L ~ . , j ;
4. qi : = q ~ - d i ; (* compute residual *)

(* compute data corresponding to u j *)

end

5. mP4 (s' 1:
6. minj(5); (* shift V to h e r grids *)
7. minj@); (* shift 1. to finer grids *)

(+: shift S to comer grids *)

for j := 0 t o n pardo
q i := g j + d i ; (* put a~ data in Z *)

end; (* of outer iteration loop *)

u n : = . n ;

end; (* of procedure concurrent *)

The intuitive meaning of the steps here is as follows. In step 1, the func-

tions { q j] r = o contain the data and satisfy

In step 2, procedure j a c o b i performs a few relaxation iterations on each grid to

approximately solve the problems

L j v j = q j , O 5 j S n .
Thereafter, the data d j corresponding to vi and residual q j on each level are

computed in steps 3 and 4. At the end of step 4 data is conserved in the sense

that

j =O

- 16-

holds up to roundoff error.

The heart of the algorithm is in steps 5, 6 and 7 . In step 5, residual data in

S is shifted to coarser grids t o speed convergence of procedure jacobi. Ideally,

we would want ij to be an approximate spectral decomposition of the residual,

with each q j in the null space of the projection n: Hj + Mi-l. This would mean

each q j was one of the most oscillatory functions in Mj, so subsequent Jacobi

iterations woud converge rapidly; however, in order to maximize parallel speed,

mprg is only called once here instead of the n-1 times required to complete the

approximate spectral decomposition.

Steps 6 and 7 shift the approximate solutions {U’]?=C and corresponding

data {d j] r=o to finer grids. The idea here is to shift the approximate solution

functions {uj]j”r0 to the finest grid, where un will eventually converge to the true

discrete solution. Equally important, the corresponding data must be simul-

taneously shifted or procedure jacobi will go on solving for it, leading to diver-

gence of the outer iteration. By shifting an approximate solution vj and

corresponding data d j to the next finer grid level, very little new residual will be

created. To be precise, this newly created residual will be

T ~ + I = L j + 1 9 j + l v j - ckj+,dj

Ths residual ~ j + l , which will be small i f Lj and Lj+l approximate each other well,

will percolate between grid levels just as the original data f n did, and will even-

tually be solved for as well.

One could give more algebraic explanations for this algorithm, but since no

convergence results have been proven, we content ourselves with this heuristic

description. The effectiveness of this algorithm is demonstrated by our numeri-

cal tests. If this algorithm becomes of practical value, one might wish to search

further for theoretical convergence results.

- 17-

In this section we consider the complexity issues associated with the algo-

rithms of the previous section when programmed on a variety of hghly parallel

architectures. More specifically, we give a rough classification of hardware sys-

tems in terms of the relative costs of data movement and arithmetic steps

required for the basic operations L , \k, and II in the multi-grid family of algo-

rithms. Each of the systems described here will be assumed to have a very large

number of relatively simple processors, each having a local memory (or a seg-

ment of a shared memory) large enough to hold its own program and the data

associated with at least one node of the grid (the real values f ,u ,v ,d Ig from the

previous section). The basic distinction made between the architectures will be

in terms of the structure of the inter-processor communication networks.

Given an elliptic p.d.e. defined on a domain which can be mapped into a

square mesh of dimension a by a where a = 2 " + l , an ideal parallel architec-

ture for the multi-grid algorithms described above would be a network of pro-

cessors configured into n levels where the ith level is a square grid of edge

dimension Zi+1. The interconnection structure is illustrated in figure 4.1. The

basic operations of L, \I, and ll are easily accommodated on this structure. The

Jacobi smoothing is defined in terms of the operation L (u) which, when approxi-

mated with a 5 or 9 point template, involves communication only along the

nearest neighbor connections in the mesh. As described in section 2, Injection,

\k, and Projection, Il are defined by a nearest neighbor "averaging template", of

the same complexity as the L (u) operation, which is preceded (followed) by a
0

mapping between the nodes of the coarse grid at level i and the odd indexed

nodes of the finer grid at level i + 1.

The network in figure 4.1 completely reflects the inter-process data flow of

the multi-grid algorithms. Consequently, the problem of programming these ,

Figure 4.1 Basic M u l t i - o r i d Aacessur A m q .
In the horizontal planes, each processor is connected to its 8 nearest neigh-
bors (only 4 neighbor connections are shown). lntergrid connections map
p-ocessor [s , t) an level i to processor (2s -1,2t -1) in level i-I.

methods on other systems reduces to the problem of emulating this network in

the commumcation scheme of the architecture at hand. This task will be stu-

died for. four basic classes of b g h l y parallel computer architectures.

Let Rj be the parallel time required to complete a Jacobi relaxation on grid

j . 3milarly, let I j and Pi bc, respectively, the complexity of \k and ll on the ja

g:d. In gciierill the quantity Rj will be a sum of three terms: the time required

to coiiiplcte the numerical cornputatlon carried out a t each processor; the over-

!lead tiiiie required by a processor t o send and recieve messagcs from each of

its neighbors; and thc actual trniisit time required for message passing. The

- 19-

relative size of these terms will vary widely from system to system. The com-

munication software overhead for an asynchroneous MIMD system typically in-

volves complex butrering and handshaking protocols, and may dominate the ar-

ithmetic computation. For synchroneous, highly parallel VLSI based systems

the communication overhead is very low but data transmission times through

. .

lenghty data paths or complex switch networks can be quite large. In general,

the arithmetic and communication-software overhead terms in Rj will roughly

equal the corresponding components in I j and Pj. The primary difference

between Rj and the latter pair is that Il and 9 require the additional "inter grid"

data movements.

Our approach to characterizing these differences will be to study four

classes of hghly parallel system designs and extract four analyt~cal models for

the added comunication cost of the "inter grid" transmissions.

The simplest cost model is one in which all communicationa between pro-

cessors have same complexity, i.e.

Ij = Pj = Rj = R1, j=l , . . ,n (4.1)
While t h s estimate will hold for for some model architectures such as f3gure 4.1,

it does not hold in many of the interesting cases which represent machines

either planed or under construction.

4.1 Mesh Connected Arrays.

Systems such as the Finite Element Machine (Storaasli [29] Jordan [IS]) or

the Massively Parallel Processor (MPP) (Batcher [4]) are configured as planar q

by m nearest-neighbor connected grids of processors. Figure 4.2 shows 3

methods for mapping the many layered MG network into a planar mesh. 4.2a

and 4.2b show embeddings that are suitable for the Concurrent Iteration algo-

rithm. Because computation must proceed in parallel on all n grid levels, each

level must be explicitly represented.

- 20 -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rd8'6'o"~-i'i'Tj-o'!o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : o 0 0 0 0 0 0 0 0 ; o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 0 0 0 0 0 0 : o

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : o 0 0 0 0 0 0 0 010

o o o o o o o 0ro-a-6-0-a:o o O : O o o o o o o o O : O

0 0 0 0 : o 0 4 'o :o 0 0 0 o l o 0 010 0 0 0 0 0 0 0 0 : o
0 0 0 0 kLo,d 0 :~~_o-o__o_'~; 0 0 0 L9,9-~~_0_?~?~?'0_~0; 0

0

0 0 0 0 0 0 0 0' 0
o o o o E"'6-b: 0 ' 0 o o o 010 o o:o o o o o o o o o:o

0 0 :o 0 0 0 0; 0 0 0 I O 0 0 0 0 0 0

Figure 4.2a q=3m -1 Figure 4.2b ~7=&$+2 3 m-1

?. i' .o- 'o- 'o' *o' b' 17
1 0 0 0 0 0 0 0 0 0 ;
:o 0 0 0 0 0 0 0 0 1
I O 0 0 0 0 0 0 0 0 '
%'6'6'6'8.0 0 0 0 :
1 0 0 0 0 0 : o 0 0 0 ;
:o-i-50 0; 0 0 0 0 ,

Fgure 4 . 2 ~ q=m

Of the two methods, 4.2b is clearly the most efficient packmg of the mul-

-2 3 WL-l versus q=3m-1), but 4.2a has advantages that 2
tilevel structure (T=

are described in the next section. Figure 4 . 2 ~ shows the natural embedding for

the multigrid algorithms of section 2. In this case the separate grid levels are

processed sequentially and therefore one may "overlay" them on the host grid.

The shortcoming of all three structures lies with the emulation of the data paths

connecting the grid levels together. Given an array of values associated with a

grid at level j , the data movement required to map

- 21 -

this to level j +1 can be decomposed into two "expand" operations. Assume that

each processor may read from and write to any neighbor and that we have a

chain of m processors such that processors 1 through m/ 2 each hold an item of

data. An "expand" move is defined to be the sequence of steps required to get

the processor at node 2i to hold the data item from node i from lS i Im/ 2. The

inverse operation is known as a "compress". The reader should have no trouble

seeing that the processors in a nearest neighbor network can complete an

expand or squeeze by a set of parallel "bucket brigade" write-read steps in time

m / 2 .

By applying the expand along each row in parallel and then along each

column in parallel the data item in position (i,j) is moved first to (2i-1,j) then to

(Zi-l,2j-l). When applied to the embedding 4.2a all subgrids are expanded in

parallel in 2m-2 steps. For embedding 4.2c, the i" subgrid is expanded in 2'-2

steps. (Embedding 4.2b requires a more elaborate algorithm, but can be com-

pleted in 3m/2 -2 steps).

Clearly, embeddings 4.2a and 4.2b permit simultaneous relaxation on all

grids and, because relaxation is independent of the size of the grid, one has R, =

R3 for j= l . .n. Taking the communication algorithm described above into

account, one obtains

Ij = Pj = R1 + c12j for embedding 4 . 2 ~ . (4.2)

Ij = Pj = R1 + clm for 4 . 2 ~ and 4.2b (4.3)
where c is a small constant that relates the time required for a read and a write

operation to R1.

4.2 Mlcsh-ShfIle Connected Systems.

I t has been proposed by Grosch [13] and Brandt [6] that, because of the

awkward nature of the intergrid communication algorithm described above, the

communication network of the mesh system be enhanced by the addition of a

- 22 -

shufT!e network in each row and column. The shufne connection, shown in figure

4.3 ior one row of B processors,

f igure 4.3 Shuffle connection o n Bmdes.

provides the exact connections that are simulated by the expand or compress

described in 4.1. In particular, processor i

2i-1 for is- Embeddlngs 4.2a and 4.2~
2 '
Tl

is b e c t l y connected to processor

have the property that level j is

mapped to level j + 1. The expansion via the shutne permutation is illustrated for

a row of processors from figure 4.2a-in figure 4.4.

L1 L2 =3
-1 4

-- .
21*1 22*1 23+ 1

m - 3 n - 1

figure 4.4 Expansion of three levels f r o m m e row of embedding 4 . 2 ~ .

Levels L1 and Le are directly connected into the odd subsequences of levels L2

and Ls respectively.

The complexity of t h s operation is dependent upon the effect of propogation

delay along the long wires in the network. In general, the longest line between

level i and lcvel i + 1 will grow as Z i . Consequently the cost model described by

equations 4.2 or 4.3 will apply. If we assume that signal propogation is neghgi-

ble then model 4.1 is applicable.

- 23-

4.3 Permutation Networks.

A number of &hly parallel architectures have been proposed that use

some form of general permutation network for processor to memory or proces-

sor to processor communication. These include the Flow Model Processor of

Burroughs [22], the PASM system [27], Ultracomputer [ZS] and the TRAC system

[l?]. The connection networks used in these systems can each be viewed as a

network of l o g (r n) stages of rn switches per stage. The family of data move-

ments that can be simultaneously executed on such a network is usually a sub-

set of the full permutation group. The Q" network of Lawrie [lQ] (shown in

figwe 4.5 for m=B processors) can be shown to admit a set

mure 4.5. 0'' network f o r B p c e s s m .

of permutations that include uniform shifts and the compress operation

described above [113. Its inverse, the Q network, can execute uniform shifts and

the expand operation. Because ALL communications must pass through log (m)

switch stages, the cost model is equivalent to the constant delay model in equa-

tion (4. l) where the constant depends on the size of the largest grid.

To accelerate the communications on an individual grid level, it is possible

to augment the 0-l network with a mesh connection as diagramed in figure 4.6.

I t is shown in [ll] that this structure is well suited for a class of locally refined

- 24-

c n Network

Mesh coordinated
Proemasor array

F i g w e 4.6, Mesh4 system.

grids as well as the uniform grids studied here. In this case, the mesh communi-

cations are uniform but the intergrid messages must traverse n=Log (m) switch

stages. The appropriate model for both standard multigrid and Concurrent

Iteration is given by

pi = Ii = R,, + c n (4.4)

4.4. Direct ITSI Embedc3ings.

All of the preceding architectures may be viewed as directly embedable in

silicon for VLSl implementation. Unfortunately, they do not all possess proper-

ties considered desirable by current design criteria. In particular, the surface

area of a chlp is reguarded as an important resource. Designers are encouraged

. to provide area optimal embeddmgs of any network. A disadvantage of the

shufIle exchange graph is that it may be shown t o require area of order

) [20] for m nodes. The mesh.embeddhgs in figure 4.2 require area m2

log2(m)
O(

tliat is h e a r in the number of nodes, but the intergrid algorithm is complex.

Figure 4.7 illustrates a linear area embedding of the complete multigrid network

(figure 4.1). Ths structure is dlrectly programmable on the proposed CHiP

archtecture [20] and has the further advantage that all connections are

-25-

F t g u r e 4.7. C'iP Processa Embedding.

completely implemented, which implies that the communication algorithm is

simple. Unfortunately this method has one major drawback. The length of the

data paths for the coarse grids grow exponentially with the maximum level of

refinement. If one assumes that the propagation delay is linear in the length of

the data path, then the appropriate cost relation is given by

(4.5) pi = rt = R~ = R~ + c 2 n 4
As with the s h a l e network of section 4.2 one may wish to assume that c is small

enough to be negligible.

The ideal embedding of figure 4.1 into silicoln would be one that has area

that is linear in the number of nodes but has an upper bound (independent of n)

on the length of the longest edge between two processors. Unfortunately, this

pair of requrements for 4.1 can be shown to be unachievable.

ti. I4 urn cried Experiments

Theoretical computational complexity bounds have not been established for

all of the multigrid algorithms considered here. Also, even when they are

- 26-

available, these bounds tend to be highly pessimistic. In this section we con-

sider a sequence of numerical experiments designed to ascertain the practical

value of the algorithms described above. This approach has the advantage that

the impact of changes in the computer architecture on the choice of method is

relatively easy to assess. In particular, the relative cost of data communication

I is found to have a major impact on the choice of algorithm.

~ The four communication models hom section 4 are summarized in table 5.1

for a n level multigrid structure.

I I model relations

Table 5.1 I Communication cost models.

The constant c is hardware implementation dependent.

As indicated in section 4, the actual performance of any of the algorithms

on a specific machine will depend on the particular design and hardware. In

most cases the appropriate model is a linear combination of the constant model

and two or three of the others, i.e.

Pi = I j = Rj = R,, +c ,2j +c 2n +c 32n-j

for some constants cl , c2 and cg. Rather than guessing a t the values of these

constants, an accurate profile of performance can be obtained by examining

each component cost model separately. That is, each algorithm is tested

against each of the cost models in table 5.1 with c =1, and Rn =l. For each algo-

rithm and each model, these measurements yield an empirically derived

- 27 -

performance function

Fhgorithm. ; number of grid levels -----) execution time.

Then, given the constants cl, ..., c3, and Rn for a particular hardwarelsoftware

system, the performance of algorithm X as a function of problem size would be

pre&cted from

(Rn -c 2-c S)FX,canst I- lFX.&g + 2FX.ltnsm + c 3 F X . l z s r *

Because our primary concern is the relative performance of the algorithms

described in sections two and three under dlfferent parallel communication

models, we have made relatively little attempt to "tune" the inner iterations. All

methods were tested using the same Jacobi inner iteration with the same near

optimal relaxation parameter. In a "production" code one would want to try

Chebyshev acceleration and various other point relaxation techniques, such as

red-black S.O.R. One could also consider inner iterations involvmg tridiagonal

solvers, such as A.D.I. or Zebra relaxation, since there are fast parallel algo-

rithms for band matrices. (Care must be exercised with the latter techniques

because they substantially add to the communication complexity of the method

and the fastest such algorithms introduce stability problems that must be dealt

with.) We note, however, that any such optimizations are likely to improve all

three methods tested below in an nearly equitable manner. (A slight edge in

inprovement may go to the Concurrent Iteration algorithm because, as it will be

shown, it depends most heavily on the spectral radius of the inner iteration).

Each algorithm was tested for each problem on grids of size rn by m where

m = 2n+1 and n ranges from 3 t o 6, i.e. for algebraic systems of size 49, 225,

961, arid 3969. In each test the number of inner iterations was held at J = 4

(changes in the value of J modified the scale of the result but not the basic

character.) The three methods tested are the concurrent iteration of section 3,

the Log(m) time per Outer iteration scheme (P=l , r= l) of Brandt which shall be

- 28 -

refered t o as LO Multigrid (or LO-MG), and the root(m) time per Outer iteration

method (P=l , r = 1.2) of section 2 which we shall call RO Multigrid (or RO-MG).

The model problems studied here are all two dimensional scalar equations. Of

the many features that should be tested to validate an iterative method for ellip-

tic equations, we have selected three: the rate of convergence to a point below

the truncation error of the discretization; the effect of domain shape; and the

effect of a nonself adjoint operator.

5.1 Truncation m r . Let u be the exact solution to the differential problem

and let uZ’ be the exact solution to the discrete system defined on an m by m

mesh on the unit square. If up is the approximate solution at outer iteration k ,

then given some constant c<<l , a reasonable measure of performance is the

smallest value of k for which,

I 1ur-u: 112 c c I Iu-2 112 5.1

In other words, when does the error in the discrete solution become dominated

by the truncation error. Our first test is to consider this behavior for the simple

e quati on

v u = -1/ 2?TZszn(%)sin(+) 2 2
with boundary conditions u = O on x=O and y=O and a vanishing normal deriva-

tive -on x = 1 and y = 1. The exact solution is au
an

u = sin (-)sin(P -y) P 2 2
Thc test results are plotted in figure 5.1. Each graph plots performance func-

tions Fmethod,model for a given model and all three methods. The horizontal axis

is problem size (measured in total number of grid levels) vs. parallel time to

satisfy equation 5.1 when c was arbitrarily chosen to be Table 5.2 gives the

detailed dhta for these plots. Also included are the mean spectral radius for

each outer iteration and an approximate count of the serial complexity.

- 29 -
1200 r co-t

R.O.

L.O.

C.I.

0 '
2 3 4 5 6

Linear 6000 1 . .

4500 i
R.O.
L.O.

1
2 3 4 5 6

200 Loa

R.O.

L.O.

C . I .

1
2 3 4 5 6

Linear-VLSI 12000 f

2 3 4 5 6

There are several points worthy of note in these results. First, unlike both

the 3 O - X G arid LO-MG algorithms, concurrent iteration does not have the pro-

perty that its spectral radius is bounded independent of n. However for the con-

stant and log cost communication models, the new dgorithm exhibits enough

cc.ncur;.ency t o be substantially laster than the modified serial methods.

- 30-

Muitigrid

Concument
It erat ion

In the case of the linear cost model, a heavy toll is paid for line grid interpo-

lations. Both the concurrent iteration and the LO-MG scheme do one coarse grid

interpolation for each outer iteration. As the number of grid levels increases

the cost of h e grid interpolations begins to - - dominate -

outer iteration, Hence, the method that requires fewer outer iterations, LO-MG,

will be the fastest.

the cycle time of each :

4 ,38522 412 700 934
5 .38286 610 1202 1920
6 371 11 765 1715 3461 ~

3 .37404 133 247 532
4 .43387 148 . 340 1108
5 ,46530 170 466 2464
6 .51354 206 656 5876

6 35086 1104 2004 3624 840948
LO 1 1 3 1 .37936 249 357 429 6540

29404
127468
477300

11 305
50468

232050
1 123966

1576
3968
8776
532

1184
2720
6592

In the case of the linear-VLSI model the weight is on the coarse grid relaxa-

tions. The RO-MG algorithm is slowest because it makes the the largest number

of coarse grid iterations. In this model the cost of inter grid communication is

trivial and Concurrent iteration, exploiting more parallelism than LO-MG, is

moderately faster (though, for the same reasons given in the linear model, one

would expect RO-MG to dominate for larger problems.)

5.2 Domain Shape. A large number of fast solvers are suitable only for problems

defined on the unit square. In the case of nonconvex domains many of these

methods, such as the fast Poisson solver, break down. Ideally, a general itera-

tive method should have its convergence rate largely unaffected by the

existence of singularities at interior corners. To test this property consider the

problem

- 31 -

v%L = 1.0
on the L-shaped domain in Q u r e 5.2. The boundary conditions

5.2

R p T e 5.2. Domain ftwpmblem 5.2.

are that the normal derivative is zero on the outer boundary and the solution is

constrained to zero near the reentrant corner. The experimental results are

summarized in table 5.3 below. Because we do not have the exact solution to

this P.D.E. we considered a M e r e n t convergence criteria. The methods were

run until machine precision was reached and the resulting solution, u-, was

recorded. The solution process was repeated until the Lz error satisfied

J(ug - uIf112 <
where the constant was chosen arbitrarily.

The basic performance profile of the three methods with respect to the four

models is relatively unchanged. However, there is a change in spectral radius

behavior. The RO-MG method remains bounded (this is provably the case), but

- 32 -

LO
M U l t i p i d

the LO-MG method shows a substantial degeneration in convergence rate.

6 18955 1160 2110 3858 35976
3 ,18662 285 409 493 7572 2392
4 ,2571 8 512 872 1178 37868 5968
5 ,31128 770 1522 2490 170048 13824

905672 -.-------.

5.3 Non-self Adjoint Operators. One important use of fast elliptic solvers is as a

component of an implicit scheme to solve the time dependent problem of the

form

L - 6 1 Concurrent 1 3
Iteration ii 4

5
6

where a,, is an artificial viscosity that is chosen so that on a grid with mesh

3237,.. 3 gg,o 2249 -- 4751 681 996 SQ3as_
.21557 112 208 448 9520 448
.46492 225 516 1680 76725 1800
.620 76 338 992 4868 461370 5408
.68554 409 1294 11564 2233549 13088

spacing h,, then

% = O(h)
At each time step the elliptic equation

5.3

must be solved for some function of u on the previous time step. For the

third experiment we solve the family of problems defined by cr, = 2- and

f = 1.0 on the domain D in figure 5.4 defined by removing the triangle ~ > g > > z

from the unit square. This experiment corresponds to advancing the time

au
az

ct,,Q2u + - = f

1

dependant problem solution one step. The boundary condition is that u=O on

aD.

- 3 3 -

Figure 5.3. Domain f o r problem 3.

5.3 are the times required to reduce the L, error

llut - u2 11.. s 10-12.
Because the operator difTered from the previous problems the inner iteration

relaxation parameter was optimized to yield a reasonably good spectral radius

when n = 3 . As the results indicate, the spectral radius of the concurrent itera-

tion algorithm degenerates as n increases, but the parallel time for the log and

constant models continues to be better than for the other schemes.

6. CONCLUSION

There are at least two major areas of inquiry left untreated by the preced-

ing analysis. The first of these is algorithm performance in the case where the

number of processors is limited. The concurrent iteration algorithm requires

4
3 roughly -m2 processors in its fully parallel form to solve a problem on a m by

m grid. The LO-MG algorithm uses m2 processors. Observe that the serial com-

plexity for C.I. in experiment 5.1 with m=65 is 1123966, whereas LO-MG requires

47?300. Based on a zero cost communication model these figures yield a proces-

sor utilization of 100% lor C.I. but only 15% for the LO-MG scheme. This fact,

together with an analysis of the algorithms, leads one to conclude that the exe-

cution time for C.I. wili double if the number of processors is cut in half but LO-

MG, not fully utilizing its m2 processors all the time, will be slowed to a lesser

,

- 34 -

extent, In fact, LO-MG uses the full array of processors only for fine grid compu-

tations, i.e. of the time. Based on a remark of M, Hyman, we note the

4 following interesting hybrid method. Assume we have -p2 processors to solve 3

log (m)

an m by m , m>p problem. Use the LO-MG method on grid levels log (p)+l

through l og (m) and use C.I. for levels at or below log (p). It can be shown that

the computation can be arranged so that all communication on grid levels above

Log (p) is between nearest neighbors and on the lower levels any of the communi-

cation models of section 4 may be applied.

An alternative approach in the limited processor case is to consider locally

refined grids. In a companion paper, [113 we show that there is a locally refined

version of the concurrent iteration algorithm that can use the high levels of con-

currency to overlap pipelined communication with computation. This paper also

compares the performance of a systolic band solver to that of the multigrid

algorithms. I t is shown that on small problems the direct solver is competitive,

but for large system the iterative methods seem to be superior.

The second area not directly considered here is the comparison of direct

and iterative methods. In the case of 2 dimensional problems of the size of those

considered in section 5, a band systolic solver [l B] will work in approximately

Bm2 steps. To derive a similar estimate for concurrent iteration consider table

5.1 and 5.2. The number of grid levels in a problem of size m is log (m) and the

constant cost model grows roughly linearly in the number of levels. An upper

bound of 401oy(rn) for the figures in the table multiplied by the time to com-

plete one fine grid relaxation R yields an estimate of approximately

40R.”log (m) . If we assume the communication model is the log cost model with

one unit of communication equal to one arithemitic operation, then asymptoti-

cally the time is quadradic in the number of grid levels. A generous upper

- 35-

.

bound is given by 20&og2(m) + 40R*log(m). If R, the execution time for one

relaxation, is around 20 steps for arithmetic and communication overhead and

the grid size m =64, then C.I. in the log model runs in time 5520 vs. 16384 for the

the direct method. This implies that if the approximations above hold for larger

values of m, the iterative scheme is substantially faster in spite of the extra

communication costs.

For 3 dimensional problems, the situation is even more dramatic. The band

solver requires roughly m4 processors for the band width mz system based on a

m by m by m cube. The computation time jumps to 0(m3) . On the other hand,

the multigrid algorithms are relatively blind to the dimension of the system.

The number of processors jumps to 0(m3) but the time complexity should not

change much from the estimates above: the value of R will go to around 60 and

the rates of convergence (reflected in the constants 20, 40) will increase at most

only slightly. The organization of the parallel algorithms and data structures for

realistic 3 dimensional problems remains an important open area of research.

5. Acknowledgments

The authors would like to acknowledge the encouragement and helpful criti-

cism provided by Robert Voigt of ICASE and the support of ICASE and the

National Science Foundation.

6. References

Dl L. Adams and J. M. Ortega, "Multi-color SOR Method for Parallel Compu-

tation," ICASE Report No. 82-9, April 6, 1962. \

P I R. E. Bank, T. Dupont, "An optimal order process for solving elliptic

h t e element equations," MATH COMP 36, 35-51 (1980).

- 36 -

~31

11

R. E. Bank, A. H. Sherman, "Algorithmic Aspects of the Multi-Level Solu-

tion of Finite Element Equations", CNA-144, Center for Numerical

ArLalysis, The University of Texas at A u s t i n , Austin, Texas, 1978.

K. Batcher, "MPP - A Massively Parallel Processor," Proceedings of the

1979 International Conference on Parallel Processing, pp.249.

G. Baudet, "Asynchroneous Iterative Methods for Multiprocessors," J .

Assoc. Comp. Mach. 25, pp226-242.

D. Braess, "The convergence rate of a multigrid method with Gauss-

SeiSel relaxation for the Poisson Equation," R o c . Multigrid Meth. Conf.

, Nov. 1981, Cologne, W. Germany, Springer-Verlag Lecture Notes in

Math. (W. Hackbush and U. Trottenberg eds.), Berlin 1982.

A. Brandt, "Multigrid Solvers on Parallel Computers", ICASE NASA Lang-

ley Research Center, Hampton, VA, ICASE Report No. 80-23, 1980.

A. Brandt, "Multilevel Adaptive Solutions to Boundary Value Problems,"

Math Comp. 31, 1977, 333-391.

R. P. Federenko, "The Speed of Convergence of an Iteration Process,"

ZH. vychisl. Mat. mat. Fiz. 4, (Russian), pp. 559-564, 1964.

D. B. Gannon, "A Note on Pipelining a Mesh Connected Multiprocessor

for Finite Element Problems by Nested Dissection", Proceedings of the

1980 International Conference on Parallel Processing, IEEE Cat. no.

BOCH1569-3, pp. 197-204.

D. B. Gannon, "On Mapping Non-uniform P.D.E. Structures and Algo-

rithms onto Uniform Array Architectures," Proceedings of the 1981

lnternational Conference on Parallel Processing, pp. 100-106.

D. B. Gannon and J. Van Rosendale, "Solving Elliptic P.D.E. Problems on

Parallel Processors: Experiments with Locally Refined Grids," Technical

-37-

Report, ICASE Nasa Langley Research Center, Hampton Va., 1982.

C. Groscb "The Effect of the Data Transfer Pattern of an Array Com-

puter on the Efficiency of Some Algorithms for the Tri-Diagonal and

Poisson Problem", Array Architectures for Computing In the BO'S and

Q O ' s , ICASE Workshop, April 1980, Hampton, Virginia.

W. Hackbusch, "On the Multigrid Method Applied to DifTerence Equa-

tions," Computing 20, pp. 291-306, 1978.

W. Hackbusch, "Multigrid Convergence Theory," Proceedmgs of the

I981 Conference on Multigrid Methods, Springer-Verlag, Lecture Notes

in Mathematics. 1982.

[lS]

[14]

[151

[lS] H. Jordan, "A Special Purpose Architecture for Finite Element

Analysis", Proceedings of the 1976 International Conference on Parallel

Processing, pp 263-266,

[171 R. N. Kapur, U. V. Premkumar, G. J. Lipovski, "Organization of the TRAC

Processor-Memory Subsystem," AFIPS Cod. Proc. pp. 632-629, May

1 960.

H. T. Kung, C. E. Leiserson, "Algorithms for VLSl Processor Arrays", C.

Mead and L. Conway, Introduction to VLSl Systems, Addison-Wesley,

Reading, Ma., (1980). pp. 271-292.

[le]

[19] D. H. Lawrie, "Access and Alignment of Data in an Array Processor,"

IEEE Trans. on Computers, Vol. C-24, No. 12, pp. 1145-1155, Dec. 1975.

T. Leighton, D. Klietman, M. Lepley, G. Miller, "New layouts for the

Shuffle-Exchange Graph," STOC(Milwaukee 1981), 278-292.

J. W. H. Liu, "The solution of Mesh Equations on a Parallel Computer,"

Dept. of Computer Science, Univ. of Waterloo, Waterloo, Ontario, Report

cs-78-19. 1978.

[20]

1211

. . .

- 3 8 -

S. F. Lundstrom, G. H. Barnes, "A Controllable MIMD Architecture",

Proceedmgs of the 1980 lnternational Conference on Parallel Process-

ing, lEEE Cat. no. 60CH1569-3, pp.19-27.

S. McCormick, "MultiGrid Methods for Variational Problems: the V-

cycie," Proc. IMACS World Cong. Sys. Sym. Sci. Comp., Aug. 8, 1882,

Montreal, Canada.

R. A. Nicolaides, "On the L2 Convergence of an Algorithm for Solving

Finite Element Equations", Math. Comp. 31, 1877, 892-906.

A. H. Sameh, S. C. Chen, and D. J. Kuck, "Parallel Poisson and Bihar-

monic Solvers", Computmg 17 (1976), 219-230.

J. Schwartz, "Ultracomputer", ACM Transactions on Programming

Languages and Systems, 1981.

H. J. Siegel, et. al., "An SIMDIMIMD Multimicroprocessor System for

Image Processing and Pattern Recognition", IEEE Conf. on Pattern.

Recog. Image Proc. Aug. 1979, pp. 214-224.

Snyder, L., A Synopsis of the Blue CHiP Project, Dept. of Computer Sci-

ences, Purdue University, Report 1980.

0. Storaasli, F. Peebles, T. Crockette, J.Knott, L. Addams, "The Finite

Element Machine: An Experiment in Parallel Processing," NASA Techni-

cal Memorandum no.64514 July, 1982.

J. R. Van Rosendale, "Rapid Solution of Finite Element Equations on

Locally Refined Grids by Multi-Level Methods", Department of Computer

Science, University of Illinois, UIUCDCS-R-80-1021, Urbana, Illinois,

1980.

NASA-Langley, 1982

